
Towards GPU Accelerated Parallel

Solvers for Multi-Phase Flows with

Adaptive Cartesian Mesh

Vladimir Kolobov and Robert Arslanbekov
CFD Research Corporation, Huntsville, AL, USA

NETL Workshop on Multiphase Flow Science

September 6-7, 2013

2

Motivation

• Serial computing has reached its zenith in performance. In

the foreseeable future, parallelism will be the key ingredient

for increasing performance.

• Most applications benefit from powerful combination of a

massively parallel GPU and a fast multicore CPU.

• GPU Architectures: Fermi->Kepler->Maxwell

• Heterogeneous Multi-Core CPU-GPU clusters for HPC

• GPUs are very effective at exploiting parallelism in regular,

data-parallel algorithms (arrays & matrices operations)

• Irregular algorithms arise from complex data structures such

as trees and graphs – they are more difficult to parallelize

(structured vs unstructured)

• Successful Irregular Computations on GPU

3

Unified Flow Solver

Coupling

Algorithm

Boltzmann

Equation

Domain

Decomposition

Continuum (NS)

Schemes

Lagrangian Particle

Module (DSMC)

Direct Numerical

Solution (DNS)

DNS + AMPS

(Adaptive Mesh in

Phase Space)

Direct Numerical Solution of

the Boltzmann kinetic

equation and Particle

(DSMC) solvers for coupled

atomistic (kinetic) and fluid

(hydrodynamic) models with

AMAR capabilities

• Self-Aware Physics and Adaptive Numerics

• Dynamic adaptation of computational (Cartesian)
mesh to solution and geometry

• Automatic switching between kinetic and fluid models
based on continuum breakdown criteria

• Efficient parallel execution (SFC & FoT) on a NASA
CPU-GPU cluster with 1000 nodes.

GFS two-phase VoF solver

with tree-based AMR

4

• GFS was originally designed for

simulations of multi-phase flows using

VoF method.

• A particulate module was added later

for tracking finite-volume solid particles

in the Eulerian fluid flow.

• The nearest-neighbor search approach

has been used with great success in

DSMC simulations with adaptive

Cartesian mesh achieving extreme

parallelism and scaling

• This technique has been implemented

into the UFS debris transport analysis

tool enabling a high-fidelity Eulerian-

Lagrangian multi-phase modeling of

three component flows: the gas phase,

fine dust phase and discrete particle

phase.

Particulate Modules in GFS and UFS

Lagrangian tracking of large

particles within the Eulerian-

Eulerian gas-dust flow with AMR to

flow gradients and to particle

density

5

• SFC allows complete flexibility for a fine-grained domain decomposition with highly

efficient dynamic load balancing (DLB) among processors.

• During sequential traversing of cells, the physical space is filled with curves in N-

order (Morton ordering), and all cells are numbered a one-dimensional array.

• A weight is assigned to each cell, proportional to CPU time required for

computations in this cell. The array modified with corresponding weights, is

subdivided into sub-arrays equal to the number of processors.

• Coarse-grained domain decomposition is obtained by using multiple octrees (a

“FoT”) connected through their common boundaries. Graph partitioning algorithms

are used for domain decomposition and DLB.

Space Filling Curves & Forest of Trees

6

UFS-DSMC: Lagrangian Particle Transport Module

 Use a single, dynamically adapted mesh for (i) particle collision and

(ii) statistics collection/visualization and particle movement

 Tree data structure allows efficient data management for AMR and

parallelization of the code

 DSMC approach requires cell sizes less than local mean free path, λ,

→ fine grids are necessary in dense flow regions

level 0

level 1

level 2

level 3

Particle trajectory involves cells at different levels

solid

R.R. Arslanbekov, V. I. Kolobov, J. Burt and E. Josyula, “Direct Simulation

Monte Carlo with Octree Cartesian Mesh”, AIAA 2012-2990

7

• An all-device (GPU) approach: the entire computation is performed

on the GPU device.

• Separate kernels for particle moving, indexing, collisions and

sampling

• Each particle is followed by a separate thread until the particle hits a

face of a cell in which it is currently located. At cells faces, particles

are either reflected or moved to neighbor cells using neighbor indices.

• Particle collisions in each cell are treated by a separate thread.

• Sampling of particle locations and velocities are performed with

sampling kernels (each cell is treated by a separate thread).

Implementation of GPU kernels

GPU Kernels are implemented according to

Su C.-C., Smith M. R., Kuo F.-A., Wua J.-S., Hsieh C.-W., and Tseng K.-C., “Large-

Scale Simulations on Multiple Graphics Processing Units (GPUs) for the Direct

Simulation Monte Carlo Method,” J. Comp. Phys. Vol. 231 (2012) 7932-7958.

with modifications for unstructured Cartesian mesh

8

GPU-Accelerated UFS-DSMC: Demonstration

• Intel(R) Xeon(R) X5675 @ 3.07GHz CPU processor and Tesla

C2075 GPU device.

• Hypersonic Flow over a cylinder at low Knudsen number (Kn =

0.01) with Mach = 10.

• The free stream temperature was set to 200 K and the wall

temperature – to 500 K. A non-uniform grid was used with a finer

grid in the stagnation region (denser region) and a coarser grid at

the back of the cylinder (rarefied region).

• The number of cells is ~130K for this case. Two cases were

benchmarked with the total number of particles of ~0.5M and ~2M

9

UFS-DSMC: Rarefied Hypersonic Flow

 First 10,000 time steps on a uniform level 5 grid

 Between time steps 10,000 and 14,000, the grid is adapted

until x < MFP/2 condition is met for all cells

 There is a large difference of 6 levels of refinement along

the cylinder surface Mach=10, Kn=0.05

 Final, adapted grid has about 22,000 leaf cells and is

characterized by about 20 (free stream region) to about 2

(stagnation region) particles per cell.

10

GPU-Accelerated UFS-DSMC: Tests

• Overall speedup factor of 22 (real CPU-only time/real GPU-CPU

time = 51136 sec/2306 sec) was achieved for the case with 2M

particles and 29 for the case with 0.5M particles.

• In particular, the particle movement part speeds up by a factor of 22

and the particle collision part (without the indexing part) – by a factor

of 36 for the case with 2M particles.

• Collisional part is accelerated better since no neighbor

indexing/retrieving is involved. Collisional kernel speedup is slightly

larger in case with 0.5M particles which is most likely due to a lower

particle-indexing overhead.

Number of Particles 0.5M 2M

Particle Move Speedup 22 22

Particle Collision Speedup 44 36

Particle Move (CPU), % 42 53

Particle Collision, (CPU), % 35 34

Particle Move (GPU), % 64 70

Particle Collision (GPU), % 27 27

Overall Speedup 29 22

11

Summary for single GPU device

• GPU accelerated DSMC code (UFS-DSMC-GPU) has been

implemented

• Implementation was carried out based on algorithms proposed in the

literature for uniform (structured) Cartesian grids and simple embedded

bodies

• These algorithms have been extended to adaptive (unstructured) octree

Cartesian grids and to solid bodies of arbitrary shape (specified either

analytically or from CAD files)

• Corresponding GPU kernels have been developed for each part of code

(particle movement, collisions, sampling)

• The code has been tested on a modern GPU device and validated

(against CPU-only results) for different problems

• For typical cases of hypersonic flows past blunt bodies in collisional

regimes (Knudsen numbers 0.01–0.05), speed up factors of 25–45 were

achieved for different parts of the code.

12

Multiple GPUs: MPI-CUDA Paradigm

• Spatial domain decomposition using the Forrest-of-Trees (FoT) method

• MPI protocol to exchange data from memory of all MPI processors and synchronize

• CUDA is used to put the DSMC-related simulation components on GPU and for data

transfer between CPU (host) memory and the GPU (device) global memory

• CUDA API function cudaSetDevice() to assign a GPU to each individual MPI process

• For data exchange between global memory of different GPU devices we use the

CUDA API function cudaMemcpy() (red line)

• Data is transferred from host-A to host-B (blue line) using the MPI protocol with

MPI_Send() and MPI_Recv().

• cudaMemcpy() to transfer data from host-B to device-B.

From Su., et al.

J. Comp. Phys.

Vol. 231 (2012)

7932

13

MPI in UFS-DSMC Particle Code

• Each CPU operates on a given number of boxes, which is useful since

computational grid is stored only on the host CPU.

• During grid adaptation and then dynamic load balancing (DLB) these boxes are

exchanged between the CPUs according to some balancing algorithm.

• Each box has it own ID number and a set of boxes on each host CPU share the

same PID (Processor ID) number.

• MPI capability implementation using FoT

parallelization algorithms.

• Domain decomposition is based on breaking

the computational domain into boxes: each

CPU then receives a set of such boxes

depending on some partitioning algorithm (e.g.,

based on a number of cells).

• The FoT is a coarse-grain parallel algorithm

since load balancing can be done only in terms

of the building (root) boxes.

Initial grid and box ID partioning for a problem

of heat transfer with 16 (root) boxes and

immersed solid phase

14

MPI in UFS-DSMC Particle Code

• All operations are performed in terms of classes and objects

• MPI exchanges are called via special read and write methods of the objects/classes.

• Exchanges implemented by creating special classes and objects which are inherited

from the main GtsObject class (parent class)

• Particles are initialized in each PID

domain. They start to move and interact

with each other, with domain boundaries,

and with solid surfaces/phases immersed

into the domain

• Particles (their position, velocity,

remaining move time, etc.) which hit an

MPI boundary are stored in a special list

• Knowing direction of box boundary face

a particle hits (PID=9), its neighbor PID

(e.g., PID=8) is determined

• Neighboring PIDs receive and then add

these particles for further processing

during the next time step. Processor ID partioning for 16 CPU/GPUs, problem of heat

transfer. Particle interactions with solid surface/phases, with

other particles and with domain and MPI boundaries

15

MPI in UFS-DSMC Particle Code: Demo

• Heat transfer between a cold cylinder (temperature Tsolid = 300 K) immersed into a

sealed box with hot walls (temperature of the walls Twall = 600 K).

• The (initially uniform) density of gas phase particles corresponds to Knudsen

number 0.01.

• Full energy accommodation assumed for particle-wall interactions.

• 30M particles used to achieve good statistics.

• Computational grid with a layer of higher resolution grid around solid surfaces.

• Local cluster node consisting of 8 CPUs (processor Intel(R) Xeon(R) X5675 @

3.07GHz).

Gas number density Temperature

16

MPI in UFS-DSMC Particle Code: Testing

• Real time (required for 200 steps) for different number of CPUs used

• Computational time drops almost linearly (power law factor close to 0.9)

with increasing the number of CPUs.

• Almost ideal scaling is achieved for the implemented MPI module.

17

MPI-CUDA in UFS-DSMC Particle Code

• A GPU kernel is used to calculate the positions of

all particles over a time step Δt.

• Each particle’s deterministic motion is handled by

a CUDA thread, using data held entirely in global

memory.

• Particles determined to have left the current GPU’s

simulation domain are placed into a buffer (in the

device, and finally on the host) in preparation for

migration to other GPU devices.

• Introduce new particles based on inlet boundary

conditions.

• Send and receive from buffers of all MPI

processors (host) with the MPI API protocol

MPI_Send() and MPI_Recv().

• Reallocate particles from buffers into their newly

allocated GPU’s global memory. After Su et al. J. Comp. Phys. Vol. 231

(2012) 7932.

A flowchart demonstrating the

particle movement phase

algorithm in the hybrid MPI-CUDA

DSMC scheme:

18

MPI-CUDA in UFS-DSMC Particle Code: Testing

• The MPI-CUDA algorithms was first tested and debugged on a local cluster

consisting of 2 Tesla C2075 GPU cards.

• Then, used NASA Pleiades cluster has 64 Westmere nodes each including

one NVIDIA Tesla M2090 (512x 1.3GHz cores) GPU.

• Each M2090 GPU device is connected to the CPU node via a PCI Express

bus. The nodes are connected via high-speed Infiniband.

The following modules were used to compile and run

Runs were carried out in “gpu” interactive queue using 1 CPU/1 GPU per

node

19

MPI-CUDA in UFS-DSMC Particle Code: Testing

• Same problem of heat transfer used for the CPU-only scaling tests presented

above.

• Results obtained on different number of GPUs are identical and they are analyzed

for the obtained steady-state solutions (after 40,000 time steps).

• Real time (per 2,500 time steps) as a function of the number of GPUs is shown

• A very good scaling is obtained with the power law scaling factor being 0.8 (factor

of 1 means ideal scaling)

• This provides a proof of the high efficiency of the implemented hybrid MPI-CUDA

algorithms

20

Future Work for Lagrangian Particle Module

• Extension to 3D geometries with GPU

• Extension to dynamically adapted grids with GPU (every, say, 100th or

1000th time step, transfer all particles back to CPU, do grid adaptation and

cell re-indexing on CPU, put all particles back to GPU, do computations on

GPU, and so on)

• Dynamic Load Balancing (based on number of cells and/or number of

particles per process) with MPI and GPU. Use MPI box exchange strategies

in FOT

• (Two-way) Coupling Eulerian-Lagrangian modules via mutually induced

forces.

• Particle collisions for dense flows

(a) Search level 1 (b) Search level 2 (c) Search level 3

Neighborhood size for different search levels

• Computation of particle collisions using a

search over a local volume.

• Particle collisions amongst all the particles

contained in the volume defined by these

neighboring cells.

• A pre-specified search level determines the

number of neighboring particles amongst

which the collisions are enacted.

21

DoE SBIR Phase I Project

Develop a modern adaptive Eulerian-Lagrangian solver for

multiphase flows on parallel CPU-GPU clusters with dynamically

adaptive Cartesian mesh for high resolution of flow and particle

transport.

Specific objectives of Phase I:

• Develop GPU-accelerated Lagrangian particle transport including:

• GPU processing of particle motion and collisions

• Particle mapping to grid

• Interpolation of local forces from Eulerian fluid and inter-phase

momentum transfer

• Develop GPU-accelerated Eulerian solver for octree Cartesian mesh

• Improve parallelization algorithms with GPU-accelerated

construction of Space Filling Curves and Octrees

• Develop detailed plan for Phase II implementation, testing and

validation as well as marketing and commercialization.

22

Acknowledgements

Financial support provided by the DoE SBIR Phase I

Project DE-SC0010148 “GPU-Accelerated Multiphase

Eulerian-Lagrangian Solver with Adaptive Mesh

Refinement”

